Prediksi Kadar Protein dan Lemak Daging Sapi Aceh Menggunakan Aplikasi Near Infrared Reflectunce Spectroscopy (NIRS)

Nirma Rotua, Teuku Reza Ferasyi, Cut Dahlia Iskandar, Zuhrawati Zuhrawati, Herrialfian Herrialfian, Teuku Zahrial Helmi

Abstract


Tujuan penelitian ini adalah untuk mengetahui  kemampuan teknologi NIRS guna memprediksi kadar lemak dan protein daging sapi aceh. Penentuan kadar protein dan lemak daging sapi aceh dilakukan pada regio Longissimus dorsi. Sampel diperoleh dari pasar Peunayong dan Lambaro, meliputi 2 sampel daging dengan masing-masing daging 3 kali pengulangan. Penelitian ini  menggunakan metode Principal Component Analysis (PCA) untuk menentukan kandungan protein dan lemak daging sapi aceh  Hasil penelitian ini menunjukan  bahwa nilai aktual laboratorium dengan nilai prediksi NIRS memperoleh nilai yang akurat ditunjukkan dengan masing-masing R-square prediksi kadar protein dan lemak daging sapi aceh 0,99 dan 0,99 yaitu variabel prediksi terbaik. Kesimpulan dari penelitian ini adalah NIRS mampu memprediksi kadar protein dan lemak daging sapi aceh dengan sangat baik karena diperoleh nilai aktual dengan nilai prediksi dan metode NIRS dapat memprediksi kadar protein dan lemak daging sapi aceh secara akurat, karena diperoleh nilai R² = 0,99.

This study aims to know the ability of NIRS technology to predicted  of fat  and protein content of aceh beef. Determination of protein and  fat content of aceh beef  was done in the Longissimus dorsi region. This research used Principal Component Analysis (PCA) method to determine protein  and  fat content of aceh beef. Samples were obtained from Peunayong and Lambaro markets. Sampled beef consisted of beef 2 samples with 3 repetition. The results of this study showed that the actual value of the laboratory with a predicted value of NIRS obtained an accurate value indicated by each R-square prediction protein  and fat content of aceh beef aceh  of 0.99 and 0.99 was the best predictive variable. It can be concluded that NIRS was able to predict the levels of protein and fat of beef as accurately. The conclusion of this study were that NIRS was able to predicted the protein and fat content of aceh beef very well because it was obtained by the actual value with prediction value and the NIRS method can predict the protein and fat content of beef aceh accurately, because the value of  R² = 0,99.

  


Full Text:

PDF

References


Agelet, L.E. 2011. Single Seed Discriminative Application Using Near Infrared Technologies. Tesis. Iowa State University. Iowa.

Buckle, K.A., R.A. Edwards, G.H. Fleet, and W. Wooton. 2007. Ilmu Pangan. Penerjemah: Hari Purnomo dan Adono. International Development Program of Australian Universities and Colleges, UI Press.

Buning-Pfaue H. (2003): Analysis of water in food by near infrared spectroscopy. Food Chem., 82: 107–115.

Cendikiawan .K.H, Bambang Kuswandi dan, Nia Kristininhrum. 2015. Deteksi Daging Babi pada Sampel Bakso Menggunakan Metode Near Infra Red (NIRS) dan Kemometrik Sebagai Vertifikasi Kehalalan. Fakultas Farmasi. Universitas Jember. E-jurnal Pustaka Kesehatan, 3(1):34-38.

Cozzolino, D., Cynkar, W. U., Shah, N., and Smith, P. 2011. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Research International, 44, 1888-1896.

Cozzolino, D., Murray, L., and Scaife, J. R. 2002. Near infrared reflectance spectroscopy in the prediction of chemical characteristics of minced raw fish. Aquaculture Nutrition, 8(1): 1–6.

Direktorat Jenderal Peternakan dan Kesehatan Hewan Kementerian Pertanian. 2015.Statistik Peternakan dan Kesehatan Hewan. Jakarta.

Folkestad, A., Wold, J. P., Rorvik, K. A., Tschudi, J., Haugholt, K. H., and Kolstad, K. 2008. Rapid and non-invasive measurements of fat and pigment concentrations in live and slaughtered Atlantic salmon (Salmo salar L.). Aquaculture, 280(1–4): 129–135.

Gomez, A. H., He, Y., and Pereira, A. G. 2006. Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77: 313–319.

Kandeepan, G.,A. S. R. Anjaneyulu, V. K.Rao, U. K. Pal, P. K. Mondal and C. K. Das. 2009. Feeding Regimens Affecting Meat Quality Characteristics. Meso. 11(4):240--‐249.

Kavdir, I., Lu, R., Ariana, D., and Ngouajio, M. 2007. Visible and near–infrared spectroscopy for nondestructive quality assessment of pickling cucumbers. Postharvest Biology and Technology, 44: 165–174.

Lan, Y.H., J. Novakowski., R.H. McCusker., M.S. Brewer., T.R. Carr and F.K. McKeith. 1995. Thermal Gelation of Pork, Beef, Fish, Chicken, and Turkey Muscle as Affect by Heating Rate and pH. Journal Food Sci. 160 (5) : 936 940.

Lawrie, R. A. 2003. Meat Science. 5th Ed. Perganon Press, Oxford.

Liu, F., He, Y., and Wang, L. 2008. Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis. Analytica Cmimica Acta, 615: 10-17.

Lomiwes, D., Reis, M. M., Wiklund, E., Young, O. A., and North, M. 2010. Near infrared spectroscopy as an on-line method to quantitatively determine glycogen and predict ultimate pH in pre rigor bovine M. Longissimus dorsi. Meat Science, 86(4): 999–1004.

Minish GL., and Fox Dg. 1979. Beef production and Management. Reston Publishing Co.Inc. A prentice Hall Co Reston Virgina.

Mouazen, A. M., Kuang, B., De Baerdemaeker, J., and Ramon, H. (2010). Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 158: 23–31.

Munawar AA. 2014. Multivariate Analysis and Afrtifical Neural Network Approaches of Near Infrared Spectroscopis Data for Non- Destructive Quality Atributes Prediction of Mango Disertasi Goettingen: Georgi August University.




DOI: http://dx.doi.org/10.21157/jim%20vet..v1i4.4773

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 JURNAL ILMIAH MAHASISWA VETERINER

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.